Stability of some versions of the Prékopa-Leindler inequality

نویسندگان

  • Károly J. Böröczky
  • Keith M. Ball
چکیده

Two consequences of the stability version of the one dimensional Prékopa-Leindler inequality are presented. One is the stability version of the Blaschke-Santaló inequality, and the other is a stability version of the Prékopa-Leindler inequality for even functions in higher dimensions, where a recent stability version of the Brunn-Minkowski inequality is also used in an essential way. 1 The problem Our main theme is some consequences of the Prékopa-Leindler inequality in one dimension. The inequality itself, due to A. Prékopa [29] and L. Leindler [24], was generalized in A. Prékopa [30] and [31], C. Borell [9], and in H.J. Brascamp, E.H. Lieb [12]. Various applications are provided and surveyed in K.M. Ball [1], F. Barthe [4], and R.J. Gardner [17]. The following multiplicative version from [1], is often more useful and is more convenient for geometric applications. THEOREM 1.1 (Prékopa-Leindler) Ifm, f, g are non-negative integrable functions on R satisfying m( r+s 2 ) ≥ √ f(r)g(s) for r, s ∈ R, then ∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of the Prékopa-Leindler inequality

We prove a stability version of the Prékopa-Leindler inequality. 1 The problem Our main theme is the Prékopa-Leindler inequality, due to A. Prékopa [14] and L. Leindler [13]. Soon after its proof, the inequality was generalized in A. Prékopa [15] and [16], C. Borell [7], and in H.J. Brascamp, E.H. Lieb [8]. Various applications are provided and surveyed in K.M. Ball [1], F. Barthe [5], and R.J....

متن کامل

From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality

We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux in [BL00]. Using the Prékopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on Rn, with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality, developed in [GGM05, GGM07], for all uniformly strictly conve...

متن کامل

Borell’s generalized Prékopa-Leindler inequality: A simple proof

We present a simple proof of Christer Borell’s general inequality in the Brunn-Minkowski theory. We then discuss applications of Borell’s inequality to the log-Brunn-Minkowski inequality of Böröczky, Lutwak, Yang and Zhang.

متن کامل

BORELL’S GENERALIZED PRÉKOPA-LEINDLER INEQUALITY: A SIMPLE PROOF By

We present a simple proof of Christer Borell’s general inequality in the Brunn-Minkowski theory. We then discuss applications of Borell’s inequality to the log-Brunn-Minkowski inequality of Böröczky, Lutwak, Yang and Zhang. 2010 Mathematics Subject Classification. Primary 28A75, 52A40.

متن کامل

Lower bounds for the Prékopa-Leindler deficit by some distances modulo translations

We discuss some refinements of the classical Prékopa-Leindler inequality, which consist in the addition of an extra-term depending on a distance modulo translations. Our results hold true on suitable classes of functions of n variables. They are based upon two different kinds of 1dimensional refinements: the former is the one obtained by K.M. Ball and K. Böröczky in [4] and involves an L-type d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009